美高梅棋牌游戏官网网站 美高梅棋牌游戏官网网站 历史上少见的通才——莱布尼茨,莱布尼茨有哪壹些辉煌成就

历史上少见的通才——莱布尼茨,莱布尼茨有哪壹些辉煌成就



1646年7月1日,戈特弗里德·威廉·莱布尼茨出生于神圣罗马帝国的莱比锡,祖父三代人均曾在萨克森政府供职,父亲是Friedrich
Leibnütz,妈妈是Catherina
Schmuck。长大后,莱布尼茨名字的拼法才改成”Leibniz”,但是一般人习惯写成”Leibnitz”。晚年时期,他的签名往往写成”von
Leibniz”,以示贵族身份。莱布尼茨死后,他的作品才公诸于世,作者名称往往是”Freiherr
[Baron] G. W. von Leibniz.”,但没有人确定他是否确实有男爵的贵族头衔。

原标题:成就牛顿的发明,为何成了追随他一生的幽灵?

自发明解析几何以后,变量就登上了数学的舞台。函数概念提出以后,描述物体运动规律便有了相应的数学方法。然而在处理变量规律这个问题上,当时的科学家并没有找到强有力的方法,这极大地阻碍了科学研究。然而自牛顿和莱布尼茨两位科学大师创立微积分这一强有力的工具之后,这些问题都迎刃而解,一场属于数学的盛宴便开始了。

莱布尼茨的父亲是莱比锡大学的伦理学教授,在莱布尼茨6岁时去世,留下了一个私人的图书馆。12岁时自学拉丁文,并着手学习希腊文。14岁时进入莱比锡大学唸书,20岁时完成学业,专攻法律和一般大学课程。1666年他出版第一部有关於哲学方面的书籍,书名为《论组合术》(de
arte binatoria)。

出品:科普中国

关于“无穷”的思想,无论在古代西方还是中国,都有萌芽。“割圆术”就是这一思想的提现,阿基米德利用圆内正96边形得到圆周率π的值在223/71到22/7之间,而我国魏晋时期的着名数学家刘徽更是以惊人的圆内正3072边形将π的值精确到了3.1416。这些方法都体现了“无限分割之后再无限求和”的微积分数学思想。然而限于低下的生产实践水平,这些思想难以进一步发展完善。

微积分

制作:中国科学院数学与系统科学研究院 黄逸文

美高梅棋牌游戏官网网站 1

现在在微积分领域使用的符号仍是莱布尼茨所提出的。在高等数学和数学分析领域,莱布尼茨判别法是用来判别交错级数的收敛性的。

监制:中国科学院计算机网络信息中心

时间很快到了16世纪,社会生产实践活动水平已经上了一个新台阶。天文学和物理学的快速发展带来了许多数学问题,例如如何求时候瞬时速度和加速度,如何计算曲边三角形的面积。进入17世纪之后,科学家们的注意力逐渐聚焦到了四大类问题上:1.已知物体的位移-时间关系函数,求其在任意时刻的速度与加速度;反过来,已知物体的加速度-时间函数,求速度与位移。2.求已知曲线的切线。3.求已知函数的最大值与最小值。4.求曲线长、曲线围成的面积、曲面围成的体积、物体的重心位置、物体作用于另一物体上的引力等。在这些问题的探索中,笛卡尔、巴罗、开普勒、卡瓦列里等科学家做出了开创性贡献。然而仍然没有形成完整的理论。在大量知识和方法的积累下,一门崭新的学科已经呼之欲出了。

莱布尼茨与牛顿谁先发明微积分的争论是数学界到今天最大的公案。莱布尼茨于1684年发表第一篇微分论文,定义了微分概念,采用了微分符号dx,dy。1686年他又发表了积分论文,讨论了微分与积分,使用了积分符号∫。依据莱布尼茨的笔记本,1675年11月11日他便已完成一套完整的微分学。

微积分,无疑是人类历史上最伟大的思维成果之一。

美高梅棋牌游戏官网网站 2

然而1695年英国学者宣称:微积分的发明权属于牛顿;1699年又说:牛顿是微积分的”第一发明人”。1712年英国皇家学会成立了一个委员会调查此案,1713年初发布公告:”确认牛顿是微积分的第一发明人。”莱布尼茨直至去世后的几年都受到了冷遇。由于对牛顿的盲目崇拜,英国学者长期固守于牛顿的流数术,只用牛顿的流数符号,不屑采用莱布尼茨更优越的符号,以致英国的数学脱离了数学发展的时代潮流。

美高梅棋牌游戏官网网站 3

巨人与大师:牛顿和莱布尼茨

不过莱布尼茨对牛顿的评价很的高,在1701年柏林宫廷的一次宴会上,普鲁士国王腓特烈询问莱布尼茨对牛顿的看法,莱布尼茨说道:”在从世界开始到牛顿生活的时代的全部数学中,牛顿的工作超过了一半”

美高梅棋牌游戏官网网站 4

美高梅棋牌游戏官网网站,牛顿出生于一个纯粹的农民家庭,父亲早亡之后母亲又迫于生计改嫁给一个牧师,之后牛顿便和祖母一起生活。残酷的家庭处境造成了牛顿沉默寡言又倔强的性格。中学时代的牛顿成绩并不出众但好奇心和求知欲都相当旺盛,慧眼识人的中学校长和牛顿的叔父都十分鼓励牛顿去读大学,于是牛顿便以减费生的身份进入了剑桥大学三一学院,开始了他的科学巨人之路。

牛顿在1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:”十年前在我和最杰出的几何学家莱布尼茨的通讯中,我表明我已晓得确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外”(但在第三版及以后再版时,这段话被删掉了)。因此,后来人们公认牛顿和莱布尼茨是各自独立地建立微积分的。

牛顿与莱布尼茨

美高梅棋牌游戏官网网站 5

牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼茨。莱布尼茨则从几何问题出发,运用分析学方法引进微积分概念、得出运演算法则,其数学的严密性与系统性是牛顿所不及的。

它由牛顿(Newton)和莱布尼茨(Leibniz)于17世纪创立。然而,伴随着它的诞生,一个全新的概念——无穷小量即如影随形。它在微积分的规则里,时而显露参与运算,时而隐形全身而去。没有人知道它确切的行踪,但在一行行严密的数学证明中,它的身影却如幽灵般始终挥之不去。无穷小量,成了牛顿终身的梦魇,也成为后人诟病微积分最大的缺陷。直到19世纪,分析的严格化开始展露曙光,无穷小量的迷思终于在困扰世人一个半世纪之后得到澄清。

根据记载,牛顿对微积分问题的研究开始于1664年,此时他十分认真地研读了笛卡尔的巨着《几何学》,并且对书中求曲线切线的方法十分着迷,求知欲旺盛的牛顿迫切寻求一种更有效更一般的方法来解决这一问题。

莱布尼茨认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他所创设的微积分符号远远优于牛顿的符号,这对微积分的发展有极大影响。1714至1716年间,莱布尼茨在去世前,起草了《微积分的历史和起源》一文(本文直到1846年才被发表),总结了自个创立微积分学的思路,说明了自个成就的独立性。

美高梅棋牌游戏官网网站 6

思索了两年之后,在1666年10月,牛顿撰写了数学史上第一遍微积分论文《流数短论》,历史性地提出了“流数”这一概念。牛顿将“流数”对应与速度,即位移函数对时间的微商,然后又以速度对时间的微商来作为加速度。深思熟虑三年之后,牛顿又完成了第二篇论文《运用无穷多项方程的分析学》,此文给出了因变量对自变量求瞬时变化率的一般方法,而且还证明了面积可以通过求变化率的逆过程得到,这实际上已经非常接近微积分基本定理。1671年,牛顿在第三篇论文《流数术与无穷级数》中完善了第一篇论文的内容,使得论述与方法都更加清晰。又过了5年,牛顿写出了他最成熟的微积分论文《曲线求积论》,进一步完善了对流数的理解并清晰叙述了微积分基本定理,还给出了他自己发明的一系列记号。

拓扑学

古希腊哲学家芝诺

至此,一代巨人完成了创立微积分的伟大壮举。然而由于自己保守内敛的性格,牛顿长期没有公开发表自己的论文,仅为他少数好友所知。直到1687年,在好友哈雷的鼓励与要求之下,牛顿才出版了巨着《自然哲学的数学原理》,直到这时,牛顿关于微积分的工作才公诸于世。正是牛顿的迟疑,引发了牛顿和莱布尼茨谁才是“微积分之父”的百年之争,更是造成了英国科学界和欧洲大陆科学界的长期分隔。

拓扑学最早称之”位相分析学”(analysis
situs),是莱布尼茨1679年提出的,这是一门研究地形、地貌相类似的学科,当时主要研究的是出于数学分析的需要而产生的一些几何问题。关于莱布尼茨对拓扑学的贡献,尚存争论。Mates引用Jacob
Freudenthal1954年一篇论文里的话说:

事实上,早在公元前500年,古希腊就已经萌发了微积分的核心思想——极限逼近。著名的哲学家芝诺(Zeno)曾经提出四个芝诺悖论,它们可以看做是极限思想最早的萌芽。在第一个悖论中,芝诺认为”运动不可能”。比如一个物体要从A点运动到B点,则首先需要运动到A和B的中间点C;而如果物体要运动到C点,则需要首先运动到A和C点之间的中点D。以此类推,这个二分法可以无限进行下去。这样的中点有无穷多个,所以物体永远也到达不了B点。因此,物体根本不可能运动,因为它被道路的无限细分所阻隔。

美高梅棋牌游戏官网网站 7

尽管莱布尼茨以为一列点在空间中的位置是由其间距离唯一决定的–当且仅当距离发生变化时点的位置发生相应的改变–他的仰慕者尤拉,在他著名的一篇论文(1736年发表,解决了柯尼斯堡七桥问题及其推广)中,却是在”拓扑变形时点的位置不发生变化”的意义下使用”几何位置”这个名词的。他误信了莱布尼茨是这个概念的创始者。……人们经常意识不到莱布尼茨是在完全不同的意义下使用这个名词的,因此被尊为数学的这个分支领域的奠基人并不恰当。

基于同样的道理,芝诺遂提出更多的悖论,诸如”落后的兔子永远追不上乌龟”、”飞矢不动悖论”、”运动场悖论”等等。现实生活中,人们显然可以把物体从A点移动到B点,落后的兔子也会很快追上乌龟。所有这些,都指向了芝诺悖论的谬误。然而,芝诺悖论里所体现出对空间、时间、无限、连续和运动的看法,给古希腊造成了深深的困惑。这样的困惑,一直延伸到了微积分的诞生。

莱布尼茨出生于德国莱比锡,他的研究领域遍及数学、物理、哲学、历史、生物学、机械、神学等,是人类历史上罕见的天才和全才。同时,莱布尼茨也是中国文化的狂热信徒。在莱布尼茨的时代,德国相对于英国,无论是科学教育还是科学发展水平,都很落后。

但平野秀秋持有不同看法,他引用本华·曼德博的话说:

不仅如此,古希腊科学家阿基米德(Archimedes)使用”穷竭法”来计算圆的周长和面积,其核心方法已经非常接近17世纪微积分的思想。除了古希腊,古代中国的科学家也在探索微积分的道路上取得了惊人的进展。魏晋时期最伟大的数学家刘徽发明了割圆术来计算圆周的精确数值。随后,割圆术被南北朝时期的数学家祖冲之发挥到了极致。他计算出圆周率介于3.1415926至3.1415927之间这一惊人的成就。这一成果甚至领先外国1000多年。

美高梅棋牌游戏官网网站 8


莱布尼茨海量的科学成果中探索是发人深省的享受。除了微积分以及其他已完成的研究之外,大量涉及内容广泛且极富前瞻性的研究对科学发展的推动力势不可
挡。在’填充理论’上即有例子,……在发现莱布尼茨还过去关注过几何度量的重要性之后,我对他的狂热更甚了。在”欧几里德普罗塔”中……,其使得欧几里德
公理更加严格,他陈述道,……’对直线,我有数种不同的定义。直线是曲线的一种,而曲线的任何部分都是和整体相似的,因此直线也具有这种特性;这不仅适用
于曲线,而且适用于集合。’这个论断今天已可以被证明。

美高梅棋牌游戏官网网站 9

1672年,莱布尼茨来到了巴黎,在惠更斯的鼓励下开始研究起了数学。一年之后,莱布尼茨访问了伦敦,得到了一本巴罗的《几何讲义》,并从一些数学家那里听闻了牛顿的一些工作。回到巴黎之后,若有所思的莱布尼茨大量研究了帕斯卡、笛卡尔、卡瓦列里等人的着作。早于牛顿三年,他公开发表了历史上第一篇微积分论文,仿佛为了印证论文的划时代意义,莱布尼茨取了一个非常长的名字:《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。在这篇论文中,莱布尼茨给出了接近于现代的微分符号和法则。在1677年的一篇手稿中,莱布尼茨也粗略地给出了微积分基本定理的表述。9年之后,莱布尼茨又发表了《深奥的几何与不可分量及无限的分析》一文,再次论述了积分和微分的关系。

因而分形几何(由本华·曼德博发扬光大)理论在莱布尼茨的自相似性思想和连续性原理中寻求支援:大自然没有跳跃(拉
丁语”natura non facit saltus”,英语”nature does not make
jumps”)。当莱布尼茨在他的形而上学著作中写道,”直线是曲线的一种,其任何部分都是和整体类似的”,他实际上提前两个世纪预言了拓扑学的诞生。至
于”填充理论”,莱布尼茨对他的朋友Des
Bosses说,”你想象一个圆,然后用三个全等的最大半径的圆填满它,后来的三个小圆又可以以同样的过程被更小的圆填充”。这个过程可以无限地继续下
去,并由此生发出了自相似性的思想。莱布尼茨对于欧氏公理的改进亦包含同样的概念。

美高梅棋牌游戏官网网站 10

美高梅棋牌游戏官网网站 11

符号思维

阿基米德与欧几里得

同时,莱布尼茨非常热衷于寻求简单的记号符号以便于简化计算,如今的微积分符号大部分出自莱布尼茨之手。

莱布尼茨有个明显的信仰,大量的人类推理可以被归约为某类运算,而这种运算可以解决看法上的差异:

古希腊的数学在历史上留下了无数绚丽的瑰宝,但随着希腊文明的衰落,也一起进入了长达千年的沉寂期。欧洲数学从此停滞不前,只有欧几里得(Elucid)的《几何原本》和阿基米德(Archimedes)的思想随着数学中心的转移来到了阿拉伯世界。从公元9世纪到16世纪,阿拉伯的数学进入了鼎盛时期。阿拉伯的数学家不仅继承了源自希腊的几何思想,还独自创立了代数学科。直到欧洲文艺复兴过后,东西方的交流通道再度打开。曾经失传的古希腊先贤们的思想结合阿拉伯数学家600多年的数学结晶再次回到了它的故乡-欧洲。

美高梅棋牌游戏官网网站 12

“精炼我们的推理的唯一方式是使它们同数学一样切实,这样我们能一眼就找出我们的错误,并且在人们有争议的时候,我们可以简单的说:
让我们计算[calculemus],而无须进一步的忙乱,就能看出谁是正确的。”
(发现的艺术 1685,W 51)

美高梅棋牌游戏官网网站 13

牛顿对微积分的研究更早,但莱布尼茨发表成果更早,但一场争论已经不可避免。孤悬海外的英国为此在相当长一段时间几乎断绝了和欧洲大陆的来往,造成了英国数学乃至科学落后的局面。

莱布尼茨的演算推论器,非常能让人想起符号逻辑,可以被看作使这种计算成为可行的一种方式。莱布尼茨写的备忘录(帕金森1966年翻译了它们)可以被看作是对符号逻辑的探索–所以他的演算–上路了。但是
Gerhard 和 Couturat 没有出版这些著作,直到现代形式逻辑在 1880 年代于
Frege 的概念文字 和 Charles Peirce
及他的学生的著作中形成,所以就更在乔治·布林和德·摩根在 1847
开创这种逻辑之后了。

美高梅棋牌游戏官网网站 14

然而无论是牛顿还是莱布尼茨,对“无穷小”这一概念的描述和使用都是含糊不清的,时而看做不确定量,时而又当成定性的“0”,所以在很长的一段时间内,微积分理论都饱受批评和质疑。

开普勒与伽利略

微积分的横空出世,迅速催生了一系列崭新的数学分支,如微分方程,微分几何,函数论,变分分析等。数学界属于分析的时代悄然来临,然而微积分理论的严格化仍是摆在无数数学家面前的一大难题。

14世纪后,欧洲各国皇室出于航海历的需要,开始出钱资助科学家研究天地星辰的规律。德国天文学家开普勒(Kepler)通过几十年的观星数据,最终发现太阳系的行星沿椭圆轨道运行;意大利科学家伽利略(Galileo)也发现投掷物体会沿着抛物线运动。对天文和力学的研究成果,进一步激发了人们对曲线研究的热情,代数学在这一阶段得到了极大发展。通过代数方法寻求几何问题的解决方案,成为研究曲线运动新的途径。这一切,都为解析几何的发现奠定了基础。

第一个在这方面做出大胆尝试的数学家是波尔查诺,他给出了连续函数定义的现代表述,同时他也指出:dy/dx只是一个记号,并不应理解为比值。

美高梅棋牌游戏官网网站 15

而贡献最大的当属柯西无疑。1821年,柯西连续出版了《分析教程》、《无穷小计算讲义》、《无穷小计算在几何中的应用》这三本重要着作,给出了微积分的一系列严格定义。首先,他把无穷小量看做极限为0的变量,从而一举解决了长期以来无穷小量“似0又非0”的模糊状况。在此基础上,他给出了连续、微分、积分、导数等一系列概念的严格定义。然而他对极限定义的描述仍使用大量文字性的东西,这是不符合数学家的追求的。

笛卡尔

美高梅棋牌游戏官网网站 16

17世纪中叶,法国数学家笛卡尔(Descartes)创立了解析几何。解析几何的横空出世迈出了从常量数学到变量数学的第一步,把自古希腊时代就被割裂的代数与几何、数与形都重新粘合在一起。有了极限思想的启发,结合解析几何的变量思维,微积分作为一门初生的全新学科,呼之欲出。它的诞生需要有人站在更高的角度,聚合无数前人的成就。而让这一理论成真、并焕发无穷生命力的人,就是17世纪的科学巨匠–牛顿(Issac
Newton)。

如今我们熟知的关于极限的“ε-δ”语言是由半个世纪之后的德国数学家魏尔斯特拉斯提出的。19世纪后,实数理论和集合论得到了空前发展,魏尔斯特拉斯、戴德金和康托等人看到了终结对微积分理论质疑的机会。经过几十年的努力,分析学严格化的历史任务终于画上了圆满的句号,终结了长达三百年的“各方混战”,使得分析学成为了像欧式几何一样是拥有坚实牢固基础的严密科学。分析的时代也达到了空前的高潮,各分支的发展也愈加繁荣。

微积分的出现很快在生产和实践上发挥了巨大的作用。通过微积分的预测,人们在草纸上的演算意外地发现了海王星的踪迹,海王星的存在也在后来通过天文望远镜的实测观察予以证实。这件旷古烁今的科学成就让微积分成为无可非议的杰作,更是赋予牛顿前人无可比拟的荣誉和地位。和牛顿同时代的德国数学家莱布尼茨也独立发明了微积分。莱布尼茨还为微积分引入了现代的符号系统,并一直延续至今。后世为了纪念两位科学天才的杰出贡献,遂将微积分的基本公式命名为牛顿-莱布尼茨公式。

美高梅棋牌游戏官网网站 17美高梅棋牌游戏官网网站 18美高梅棋牌游戏官网网站 19

美高梅棋牌游戏官网网站 20

本文转自公众号 数学maths

牛顿-莱布尼茨公式

不过,在微积分创立之初,牛顿和莱布尼茨的工作还远远不够完善。牛顿为了计算微积分所引入的流数法因为模糊不清的表述而遭遇了最广泛的批评。1734年,英国哲学家、大主教贝克莱(Berkeley)直接提出尖锐的问题,将矛头指向微积分的基础–无穷小的问题。他指出,牛顿为了求出多项式x的n次方的导数,首先假定无穷小量dx的存在,应用二项式(x+dx)的n次方,然后减去x的n次方,得到的增量再除以dx,最后又让dx消失为0。这个假设的关键在于最初无穷小量dx不为零,最后却又让它等于零。这种随心所欲的操作,让dx召之即来、挥之即去,成为幽灵般的存在。这个dx遂被称为”逝去量的灵魂”,成为牛顿一生的梦魇。牛顿无法回答这个问题,只好避而不谈。无穷小量的迷踪不定,从而引起了数学界长达一个半世纪的争论,并最终导致了数学史上的第二次危机。

微积分在最初的发展阶段,更多的强调形式的计算结果而忽视了其原理的可靠性。由于无穷小量的概念没有得到澄清,与此相关的导数、微分、积分,并由此衍生的发散级数的求和等等都成了棘手的问题。

美高梅棋牌游戏官网网站 21

美高梅棋牌游戏官网网站 22

达朗贝尔与拉格朗日

18世纪中叶,法国数学家达朗贝尔(D’Alembert)提出把极限理论作为分析严格化的基础。他独辟蹊径地把微分看做是函数的极限,特别指出了一个量是另一个量的极限定义。但他没有逃脱传统的几何方法的影响,没能把极限用严格的形式表述出来。

几乎同时代,另一位法国数学家拉格朗日(Lagrange)则试图摆脱无穷小量和极限的概念,将任何函数展开为无穷的级数之和来定义各阶导数。这类泰勒(Taylor)级数虽然取得了一定的成效,但是同时也有很强的局限性。不仅在应用上无比繁琐,而且因为能表达为泰勒级数的函数自身需要很强的约束条件,这极大地限制了可微分函数的范围。拉格朗日的努力也在一定程度上宣告失败。

美高梅棋牌游戏官网网站 23

直到19世纪20年代,数学家们才开始普遍关注微积分的严格化问题。一系列闪亮的名字即将登场,他们开启了一场持续近半个世纪的接力赛,终于在19世纪末期为数学分析奠定了严格的基础,也将微积分置于前所未有的坚固基石之上,从而顺利结束了第二次数学危机。

挪威数学家阿贝尔(Abel)最早开始积极倡导和推动分析的严格化。作为对阿贝尔呼吁的回应,捷克的数学家波尔查诺(Bolzano)在1816年清楚地提出了级数收敛的概念,并给出了导数等概念的合适定义。事情的伟大转折则要归功于法国的数学家柯西(Cauchy)。

美高梅棋牌游戏官网网站 24

法国数学家柯西

柯西于1821-1823年在其著作《分析教程》和《无穷小计算讲义》里给出了数学分析一系列基础概念的清晰定义。例如,他给出了精确的极限定义,并由此建立了现代意义下的连续性、导数、微分、积分、无穷级数等等的概念。特别的,无穷小量,并不是逝去量的灵魂,也不是一个常量,而是一个以零为极限的变量。自此,柯西一举回答了自牛顿时代就困扰世人的无穷小量的行踪问题。

及至魏尔斯特拉斯(Weierstrass)创立了极限理论、戴德金(Dedekind)建立了实数理论以及后来康托(Cantor)集合论的竣工,无穷小量终于现出真身,再也无法隐藏在数学王国的角落里。它是牛顿放出来的幽灵,历经一百五十多年才被后人收服。追逐它谜一样的踪迹则直接促进了现代数学许多分支的诞生,也终于让第二次数学危机落下了帷幕。

美高梅棋牌游戏官网网站 25

危机过后,一切归于平静,数学重又回到了安宁和谐的轨道。遗憾的是,美好的日子并没有持续多久,第二次数学危机的结束很快就引爆了第三次数学危机。这一次的危机比以往的任何风暴都要猛烈,它无疑是数学史上最为深刻的思想交锋,其核心的争论一直延续至今。从某种程度上来说,第三次数学危机塑造了现代文明。众多石破天惊的思想横空出世,它们不仅结出了现代数学的丰硕成果,更深刻地改变了人类的历史。人类文明从此进入了梦寐以求的快车道,向着更加璀璨的未来一路飞驰。

美高梅棋牌游戏官网网站 26返回搜狐,查看更多

责任编辑:

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图